The Research on Technology in Arabic Language Learning: A Bibliometric Analysis (1993-2024)

Authors

  • Muhammad Hafidz Khusnadin Institut Agama islam Negeri Metro Lampung
  • Dwi Arian Putra Mandaka Universitas Islam Negeri Sunan Kalijaga Yogyakarta
  • ⁠Zulfi Fadhlurrahman Universitas PTIQ Jakarta
  • ⁠Zaeni Anwar Universitas PTIQ Jakarta
  • Ramadhan Safrudin UIN Sunan Gunung Djati Bandung

Keywords:

Arabic Language Learning, Bibliometric Analysis, Technology, Scopus Database

Abstract

This study aims to analyze research trends related to the use of technology in Arabic language learning from 1993 to 2024 using bibliometric analysis methods. The research data was obtained from the Scopus database, and through data processing, the authors identified 100 relevant publications. The bibliometric analysis revealed that 2023 had the highest number of publications, with 21 articles related to the use of technology in Arabic language learning. Furthermore, a significant citation trend associated with this topic occurred in 2022, with a total of 135 citations in scientific literature. Regarding the origin of the research, Malaysia emerged as the leading contributor with 24 related publications, while Saudi Arabia stood out as the country with the most significant international collaboration, with 23 collaborative links with other countries. Of all the journals that published this research, 26 were classified as Q1 journals, indicating a high level of relevance and impact of this research in the scientific literature. A deeper analysis revealed that the focus of research related to the use of technology in Arabic language learning encompasses four main aspects: 1) Deep Learning and e-learning; 2) Speech recognition; 3) Learning systems and machine learning; 4) Natural language processing. This study provides a comprehensive insight into the research trends and developments in the use of technology in the context of Arabic language learning over the past two decades.

Downloads

Download data is not yet available.

References

Administrator. (2021). PCR Gandeng APSB Malaysia Kembangkan Aplikasi Pembelajaran Gramatikal Bahasa Arab untuk non arabic Speaker. POLITEKNIK CALTEX RIAU.
Ahmed, A., Ali, N., Alzubaidi, M., Zaghouani, W., Abd-alrazaq, A. A., & Househ, M. (2022). Freely Available Arabic Corpora: A Scoping Review. Computer Methods and Programs in Biomedicine Update, 2(October 2021), 100049. https://doi.org/10.1016/j.cmpbup.2022.100049
Al-Anzi, F. S. (2022). Improved Noise-Resilient Isolated Words Speech Recognition Using Piecewise Diferentiation. Fractals, 30(8). https://doi.org/10.1142/S0218348X22402277
Alhassun, A. S., & Rassam, M. A. (2022). A Combined Text-Based and Metadata-Based Deep-Learning Framework for the Detection of Spam Accounts on the Social Media Platform Twitter. Processes, 10(3). https://doi.org/10.3390/pr10030439
Asbulah, L. H., Sahrim, M., Soad, N. F. A. M., Rushdi, N. A. A. M., & Deris, M. A. H. M. (2022). Teachers’ Attitudes Towards the Use of Augmented Reality Technology in Teaching Arabic in Primary School Malaysia. International Journal of Advanced Computer Science and Applications, 13(10), 465–474. https://doi.org/10.14569/IJACSA.2022.0131055
Astuti, W. (2018). Pemanfaatan media berbasis e-learning dalam pembelajaran bahasa arab. Ihtimam, 1(2), 121–136.
Bilquise, G., Ibrahim, S., & Shaalan, K. (2022). Bilingual AI-Driven Chatbot for Academic Advising. International Journal of Advanced Computer Science and Applications, 13(8), 50–57. https://doi.org/10.14569/IJACSA.2022.0130808
Duwairi, R. M., & Halloush, Z. A. (2022). Automatic recognition of Arabic alphabets sign language using deep learning. International Journal of Electrical and Computer Engineering, 12(3), 2996–3004. https://doi.org/10.11591/ijece.v12i3.pp2996-3004
Elnagar, A., Al-debsi, R., & Einea, O. (2019). Arabic text classification using deep learning models. Information Processing and Management, 57(1), 102121. https://doi.org/10.1016/j.ipm.2019.102121
Elsaid, A., Mohammed, A., Ibrahim, L. F., & Sakre, M. M. (2022). A Comprehensive Review of Arabic Text Summarization. IEEE Access, 10, 38012–38030. https://doi.org/10.1109/ACCESS.2022.3163292
Fouadi, H., Moubtahij, H. El, Lamtougui, H., & Yahyaouy, A. (2022). SENTIMENT ANALYSIS OF ARABIC COMMENTS USING MACHINE LEARNING AND DEEP LEARNING. Indian Journal of Computer Science and Engineering, June. https://doi.org/10.21817/indjcse/2022/v13i3/221303003
Ghani, M. T. A., Hamzah, M., Daud, W. A. A. W., & Romli, T. R. M. (2022). The Impact of Mobile Digital Game in Learning Arabic Language at Tertiary Level. Contemporary Educational Technology, 14(1). https://doi.org/10.30935/cedtech/11480
Jafri, R., Althbiti, S. M. M., Alattas, N. A. A., Albraiki, A. A. A., & Almuhawwis, S. H. A. (2022). Tac-Trace: A Tangible User Interface-Based Solution for Teaching Shape Concepts to Visually Impaired Children. IEEE Access, 10(October), 131153–131165. https://doi.org/10.1109/ACCESS.2022.3228455
Kaddoura, S., & Nassar, R. (2024). A comprehensive dataset for Arabic word sense disambiguation. Data in Brief, 55, 2–8. https://doi.org/10.1016/j.dib.2024.110591
Khoiriyah, H. (2020). Deskripsi Pengembangan Kurikulum Pembelajaran Bahasa Arab Di Malaysia. Al-Lisan: Jurnal Bahasa, 6(1), 96–115.
Khomsah, A. F., & Muassomah, M. (2021). PENERAPAN E-LEARNING DALAM PEMBELAJARAN BAHASA ARAB DI MASA PANDEMI. Tarbiyatuna: Jurnal Pendidikan Ilmiah, 6(1), 1–14.
Li, W., & Zhao, Y. (2015). Bibliometric analysis of global environmental assessment research in a 20-year period. Environmental Impact Assessment Review, 50, 158–166. https://doi.org/10.1016/j.eiar.2014.09.012
Masadeh, M., Davanager, H. J., & Muaad, A. Y. (2022). A Novel Machine Learning-based Framework for Detecting Religious Arabic Hatred Speech in Social Networks. International Journal of Advanced Computer Science and Applications, 13(9), 767–776. https://doi.org/10.14569/IJACSA.2022.0130991
Mayulu, H., Sawitri, E., Daru, T. P., Tricahyadinata, I., & Rorimpandey, B. (2022). Strategi Sukses Belajar Era Digital di Perguruan Tinggi. INOVASI: Jurnal Ekonomi, Keuangan Dan Manajemen, 18(4), 750–757.
Meddeb, O., Maraoui, M., & Zrigui, M. (2021). Personalized Smart Learning Recommendation System for Arabic Users in Smart Campus. International Journal of Web-Based Learning and Teaching Technologies, 16(6), 1–21. https://doi.org/10.4018/IJWLTT.20211101.oa9
Mohammed, S. H., & Kinyó, L. (2022). The cross-cultural validation of the technology-enhanced social constructivist learning environment questionnaire in the Iraqi Kurdistan Region. Research and Practice in Technology Enhanced Learning, 17(1). https://doi.org/10.1186/s41039-022-00199-7
Moher, D. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). Journal of Chinese Integrative Medicine, 7(9), 889–896. https://doi.org/10.3736/jcim20090918
Nasution, N. S., & Lubis, L. (2023). Urgensi Pembelajaran Bahasa Arab dalam Pendidikan Islam. Jurnal Simki Pedagogia, 6(1), 181–191. https://doi.org/10.29407/jsp.v6i1.227
Rahman, A., Kabir, M. M., Mridha, M. F., Alatiyyah, M., Alhasson, H. F., & Alharbi, S. S. (2024). Arabic Speech Recognition: Advancement and Challenges. IEEE Access, 12(March), 39689–39716. https://doi.org/10.1109/ACCESS.2024.3376237
Rahman, S. N. H. A., Ramli, Z., Bujang, N. A., Ajmain, M. T., Mahpuz, A. N., Roslan, N. R. I. M., Mohamad, A. M., & Hehsan, A. (2022). Empowering education transformation through IR 4.0: efforts in improving the quality of Arabic language education. International Journal of Business and Globalisation, 30(3–4), 293 – 302. https://doi.org/10.1504/IJBG.2022.123609
Ramadhan, R., Hilmi, D., & Azhari, A. (2023). PENGGUNAAN E-LEARNING DALAM PEMBELAJARAN BAHASA ARAB : FITUR DAN POLA PENGAJARAN. Tarbiyatuna: Jurnal Pendidikan Ilmiah, 8(1), 47–58.
Ritonga, M., Febriani, S. R., Kustati, M., Khaef, E., Ritonga, A. W., & Yasmar, R. (2022). Duolingo: An Arabic Speaking Skills’ Learning Platform for Andragogy Education. Education Research International, 2022. https://doi.org/10.1155/2022/7090752
Ritonga, M., Zulmuqim, Z., Bambang, B., Kurniawan, R., & Pahri, P. (2022). SIAKAD machine learning for correcting errors in speaking Arabic. World Journal on Educational Technology: Current Issues, 13(4), 996–1004. https://doi.org/10.18844/wjet.v13i4.6270
Safrudin, R., Nandang, A., Siregar, S. D. P., Musthafa, I., Fauzi, M. F., Alby, M. H. F., & Suyono. (2024). Development of Arabic Language Learning Research : A Bibliometric Study on Scopus ( 2009-2024 ). Al-Ta’rib Jurnal Ilmiah Program Studi Pendidikan Bahasa Arab, 12(2), 321–338. https://doi.org/10.23971/altarib.v12i2.8929
Safrudin, R., Sanah, S., & Siregar, S. D. P. (2024). Research Trends on Writing Skill in Arabic Language; A Bibliometric Analysis Ramadhan. Aphorisme: Journal of Arabic Language, Literature, and Education, 5(2), 94–114. https://doi.org/10.37680/aphorisme.v5i2.5442
Santi Maudiarti. (2018). Penerapan E-Learning Di Perguruan Tinggi. PERSPEKTIF Ilmu Pendidikan, 32(1), 53–68.
Shabur, A., & Amadi, M. (2023). Perkembangan Pendidikan Bahasa Arab di Era Digital : Sistematic Literature Review. Jurnal Motivasi Pendidikan Dan Bahasa, 1(3).
van Nunen, K., Li, J., Reniers, G., & Ponnet, K. (2018). Bibliometric analysis of safety culture research. Safety Science, 108(November 2016), 248–258. https://doi.org/10.1016/j.ssci.2017.08.011
Youssef, A. R., Ali, A. A., & Sayed, F. R. (2022). Real-time Egyptian License Plate Detection and Recognition using YOLO. International Journal of Advanced Computer Science and Applications, 13(7), 853–858. https://doi.org/10.14569/IJACSA.2022.0130799

Downloads

Published

2025-03-11

How to Cite

Muhammad Hafidz Khusnadin, Dwi Arian Putra Mandaka, ⁠Zulfi Fadhlurrahman, ⁠Zaeni Anwar, & Ramadhan Safrudin. (2025). The Research on Technology in Arabic Language Learning: A Bibliometric Analysis (1993-2024) . LINGUA: Jurnal Bahasa, Sastra, Dan Pengajarannya, 21(2), 309–324. Retrieved from https://lingua.soloclcs.org/index.php/lingua/article/view/1045

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.